Multilevel Image Dehazing Algorithm Using Conditional Generative Adversarial Networks
نویسندگان
چکیده
منابع مشابه
High-Quality Face Image SR Using Conditional Generative Adversarial Networks
We propose a novel single face image superresolution method, which named Face Conditional Generative Adversarial Network(FCGAN), based on boundary equilibrium generative adversarial networks. Without taking any facial prior information, our method can generate a high-resolution face image from a low-resolution one. Compared with existing studies, both our training and testing phases are end-toe...
متن کاملContext-conditional Generative Adversarial Networks
We introduce a simple semi-supervised learning approach for images based on in-painting using an adversarial loss. Images with random patches removed are presented to a generator whose task is to fill in the hole, based on the surrounding pixels. The in-painted images are then presented to a discriminator network that judges if they are real (unaltered training images) or not. This task acts as...
متن کاملBidirectional Conditional Generative Adversarial Networks
Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples (x) conditioned on both latent variables (z) and known auxiliary information (c). We propose the Bidirectional cGAN (BiCoGAN), which effectively disentangles z and c in the generation process and provides an encoder that learns inverse mappings from x to both z and c, trained jointly with the...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملSpectral Image Visualization Using Generative Adversarial Networks
Spectral images captured by satellites and radiotelescopes are analyzed to obtain information about geological compositions distributions, distant asters as well as undersea terrain. Spectral images usually contain tens to hundreds of continuous narrow spectral bands and are widely used in various fields. But the vast majority of those image signals are beyond the visible range, which calls for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2981944